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Abstract

An algorithm is presented for solving a diffusion equation on a curved surface coupled to diffusion in the volume, a
problem often arising in cell biology. It applies to pixilated surfaces obtained from experimental images and performs
at low computational cost. In the method, the Laplace–Beltrami operator is approximated locally by the Laplacian on
the tangential plane and then a finite volume discretization scheme based on a Voronoi decomposition is applied. Conver-
gence studies show that mass conservation built in the discretization scheme and cancellation of sampling error ensure con-
vergence of the solution in space with an order between 1 and 2. The method is applied to a cell-biological problem where a
signaling molecule, G-protein Rac, cycles between the cytoplasm and cell membrane thus coupling its diffusion in the mem-
brane to that in the cell interior. Simulations on realistic cell geometry are performed to validate, and determine the accu-
racy of, a recently proposed simplified quantitative analysis of fluorescence loss in photobleaching. The method is
implemented within the Virtual Cell computational framework freely accessible at www.vcell.org.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, there has been increased attention to numerical approaches to diffusion on arbitrary surfaces,
particularly in the context of applications to cell biology [1,2]. Indeed, cellular metabolism and signaling
are mediated in part by trans-membrane receptors that can diffuse in the cell membrane [3]. Because the cell
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shape is generally irregular, modeling these processes as well as the analysis of experimental data (see the
application in part II) requires an accurate approximation of diffusion on an arbitrary curved surface. As
in the flat space, a reaction–diffusion system on a surface S � R3 is governed by mass conservation:
1 Alt
oCi

ot
¼ �divSJi þ Ri; i ¼ 1; . . . ;m; ð1Þ
where Ci is the concentration of the ith membrane species, Ji = �Di gradS Ci is the diffusive flux density of this
species, Di is the diffusion coefficient and the source term Ri describes the effect of all reactions on the ith
species. The differential operators divS and gradS are defined on S and the second-order differential operator
divS (gradS) ” DS that appears in Eq. (1) is the Laplace–Beltrami operator (LBO) [4], which is a generalization
of the Laplacian on manifolds.1

Spatial discretization of LBO for solving Eq. (1) numerically is generally more involved than in the flat case.
While algorithms based on LBO discretization on triangulated surfaces [5] are relatively simple and fast, they
involve unstructured grids and therefore may have a lower order of accuracy (see references in [5]). Better
accuracy can be achieved by methods that embed the original two-dimensional (2D) problem into a three-
dimensional (3D) space [1,2,6]. In [1], 2D diffusion on a surface is approximated by diffusion in an annular
3D domain consisting of all the points within a small, on the order of the mesh spacing h, distance from S,
and the problem is solved on a uniform Cartesian grid. The papers [2,6] use another approach, originally
introduced in [7]. In this approach, the initial data on the surface is extended smoothly into the 3D volume
using a level set method (so that the surface S is a zero level set) and the equations are modified to exclude
diffusive fluxes between the level sets. The adapted equations are solved in [6] on a uniform Cartesian grid,
while spatial discretization in [2] is based on a particle representation of the implicit surfaces (the particle
methods were previously used in [8] for solving diffusion in the lumen of the endoplasmic reticulum). Both
methods [1,2] achieve second-order convergence in space and time. An additional advantage of the methods
based on level sets is that they can be extended to accurate discretization of non-linear differential operators on
surfaces. They also are suited well for problems involving moving membranes. Recently, the ideas of [7] have
been further developed in [9] and applied in the context of phase field approximation in [10].

In biological applications, surfaces might not be given but rather need to be inferred from image data. The
algorithms of [1,2] were used in conjunction with standard (albeit elaborate) methods for generating level set
functions from image data for the purpose of constructing discretizations. The problem of recovering a
smooth surface from pixilated data is currently an area of active research in the context of computer graphics
[11]. A number of interesting approaches have been proposed. They usually involve an iterative process requir-
ing significant user input, and therefore may not be easily automated. In addition, as these techniques are
designed primarily for visualization purposes, they may be hard to apply in a way that guarantees convergence
of surface metrics as the grid is refined.

Conservation of mass is important for computational modeling in cell biology. While the method of [6] is
non-conservative, in [2] mass conservation is enforced through global rescaling, and the discretization scheme
in [1] is fully conservative. Problems in which diffusion on the surface is coupled to diffusion in the enclosed
volume often arise in cell biology. While [2] contains simulations of diffusion in the lumen and on the surface
of the same geometry, the extension of methods of [1,2] to coupling with diffusion in the embedding space has
not been published. Coupling to dynamics in the volume can be achieved by Monte Carlo type methods which
were also used for simulating diffusive processes on surfaces [12,13]. This technique, however, has a slow con-
vergence rate and requires an exact, analytically defined, surface.

In this paper, we present a numerical algorithm for solving Eq. (1) on arbitrary pixilated surfaces, which
allows for coupling to a reaction–diffusion system in the volume within a fully conservative discretization
scheme. Its development has been motivated by the need to include a capability of modeling surface diffusion
in the Virtual Cell computational framework (VCell) [14], a general-purpose tool designed for experimental cell
biologists (as well as theorists) to test their hypotheses and models. It allows a user to couple cellular chemical
kinetics, diffusion–advection transport and electrophysiological properties of membranes into a system of time-
dependent partial differential equations (PDEs) in two or three dimensions and solve the system numerically on
hough this implies uniform Di, the algorithm described in the paper is applicable to non-uniform Di as well.
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arbitrary geometry [15,16]. After extensive testing (a selection of tests is described in detail in Section 2.5 of part
I), the proposed method has been incorporated into VCell and is now freely accessible at www.vcell.org.

Our algorithm, as detailed in part I, is relatively simple and performs at low computational cost. As an
example, in the application of part II of this paper, a computation of 45 time steps performed on the grid
of 10,830 surface and 96,390 volume mesh nodes yielding acceptable accuracy takes 85 s (all computations
were performed on a Windows compute node with an Intel Xeon 2.8 GHz CPU); the same simulation on
the grid of 97,504 surface and 2,438,920 volume nodes takes 86 min. In both cases, the computation time
includes geometry processing and meshing. Consistently with the way VCell handles volume diffusion, Eq.
(1) are discretized using a finite volume (area) scheme to guarantee mass conservation. The method applies
to arbitrary pixilated surfaces inferred from segmented experimental images. This data format is familiar to
cell biologists and can be obtained by accessible image processing tools. While the method neither requires
nor produces an explicit smooth watertight surface, it allows the user to improve accuracy by refining the mesh
as needed. In the example cited above, the relative error is estimated to be in the range of few percent, accept-
able in biological applications for all practical purposes. Convergence studies in Sections 2.4 and 2.5 indicate
an order of convergence in space between 1 and 2.

The paper consists of two parts. The key ideas of the method – to approximate LBO locally with the Lapla-
cian on a tangential plane, and then apply a finite volume discretization scheme based on a Voronoi decom-
position – are described in part I, along with the analysis of convergence and a representative selection of tests
used to validate the algorithm. In part II, we present an application of the algorithm to a concrete cell-bio-
logical problem. The application involves modeling of fluorescence loss in photobleaching (FLIP) on realistic
cell geometry in the situation where a signaling molecule called Rac cycles between the cell interior and the cell
membrane, and therefore the surface diffusion of Rac is coupled to its diffusion in the cytoplasm. A simplified
way of analyzing FLIP data was proposed in [17] to infer a rate of dissociation of Rac from the membrane.
The modeling study presented here helps validate the procedure and assess its accuracy.

2. Part I. Numerical algorithm

2.1. Diffusion on a curved surface

Consider a volumetric domain X and assume that a regular orthogonal grid of size h is imposed on a box
containing X. A pixilated approximation of X is given by Xh, the union of the volume elements with centers in
X. The boundary of Xh is a stepwise surface Sh which is composed of rectangular facets with side length h, as
illustrated in Fig. 1. The centers of these facets comprise a set of nodes fri; i ¼ 1; . . . ;NSg � R3 on Sh. These
are the points at which jump conditions for volume PDEs and other membrane interactions are evaluated in
VCell. For this reason, it is convenient to solve for the concentrations of membrane molecules at exactly the
same points, because it facilitates coupling with the volume variables. Even though the points {ri} do not
Fig. 1. A ‘‘staircase’’ approximation Sh of a sphere obtained by orthogonal meshing of the volume. Similar pixilated surfaces (stepwise
curves in 2D) arise from microscope images. The centers of the staircase facets comprise a set of computational nodes on the surface. c1

and c2 are stepwise contours obtained by dissecting Sh in two Cartesian directions.

http://www.vcell.org
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necessarily lie on S, our algorithm uses these points to approximate the solution of Eq. (1) on S. We utilize a
finite volume discretization scheme, which is used frequently in transport problems and guarantees that
numerical errors do not violate mass conservation [18].

Whereas the distances from the approximate nodes to the true surface converge to zero as h tends to zero,
the surface area of Sh does not converge to the area of S, and neither do geodesic distances between nodes on
Sh converge to geodesic arc lengths on S. To obtain a convergent solution to the PDE, our algorithm first cal-
culates convergent approximations of the normals to the surface at the staircase points, and then uses them to
approximate LBO locally by the Laplacian on a tangential plane.

Let r
ðSÞ
i be the point in S that is closest to ri. If the locations of all points frðSÞi g were known and the geodesic

distances between any pair of them could be computed, one could apply the finite volume method by parti-
tioning the surface S into a set of surface elements {Mi}, each surrounding r

ðSÞ
i , and integrating Eq. (1) over

each patch, i.e.
o

ot

Z
Mi

C dA ¼
Z

oMi

DgradS C � ndsþ
Z

Mi

RdA; i ¼ 1; . . . ;NS; ð2Þ
where oMi is the boundary of the ith surface element, and n is an outward normal to oMi tangential to the
surface (see Fig. 2) [19]. The index enumerating variables is omitted in Eq. (2) for simplicity. One way of par-
titioning S into regions {Mi} is the Voronoi decomposition [20], in which the region Mi is comprised of all
points on S that are closer to the i-th node than to any other node. The Voronoi decomposition is convenient
for approximating the contour integral

R
oMi
ðoC=onÞds in Eq. (2) since the shared borders between adjacent

Voronoi cells are always orthogonal to the geodesic curves connecting the nodes of these cells, and therefore,
flux densities are easily approximated based on concentration values at the nodes and the arc length between
nodes.

We apply a similar approach in the case of unknown r
ðSÞ
i by integrating the equation on a set of locally pla-

nar Voronoi polygons centered at the approximate points {ri}. To construct these polygons, we first approx-
imate the normal vector to S at each surface point r

ðSÞ
i based on the known points {ri} on Sh. For this, we

consider contours c1 and c2 on two mutually orthogonal slices of Sh crossing at node ri, as shown in
Fig. 1. In each slice, the tangent to the surface at point r

ðSÞ
i is approximated by finite differences using two

nearby nodes that are apart from ri by k steps along the corresponding stepwise contour. The number of steps
k is chosen in a way that guarantees convergence as h! 0; it depends on local curvature and increases with
decreasing mesh size. The fastest convergence to the correct tangents is achieved with k = O(h�q) where q,
which is less than 1, depends on the particular method used for computing the tangent (see Appendix for
details). Finally, the unit normal vector Ni at the i-th node is determined as the normalized cross-product
of the two tangent vectors along both contours.

Once the normal Ni is computed, a polygon centered at ri is constructed in the plane Pi that is orthogonal to
Ni. A set of nodes in a certain neighborhood of ri is projected onto Pi. In the current implementation, this
neighborhood includes all the nodes rj whose corresponding facets have at least one common point with
the facet of ri. The projections ~rj ¼ rj �NiðNi � ðrj � riÞÞ and the point ri form a set of co-planar points to
which a two-dimensional Voronoi decomposition is applied [Qhull (www.qhull.org), a publicly available
library, is used for this computation]. The procedure yields the natural neighbors of the node ri and a polygon
centered at the i-th node. Since Ni converges to the exact normal to the surface at r

ðSÞ
i , the planar Voronoi

polygons constructed for the nodes ri converge to the curved Voronoi cells centered around r
ðSÞ
i . The planar
Fig. 2. A control area Mi with the boundary oMi. Solid lines delineate a triangle Dik referred to in Eq. (5).

http://www.qhull.org
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distances between ri and its projected neighbors approximate the geodesic distances dij between the corre-
sponding points on S shown in Fig. 2, and the length of each side of the polygon approximates the geodesic
length sij. Because the procedure does not automatically guarantee that dij = dji and sij = sji, these quantities
are symmetrized: dsym

ij ¼ ðdij þ djiÞ=2 and ssym
ij ¼ ðsij þ sjiÞ=2. One can show that the order of convergence of

dsym
ij and ssym

ij is the same as that of Ni.
Eq. (2) is approximated on the new set of polygons as follows. The area of the i-th surface element, Ai, is

approximated as 1
4

P
j2GðiÞd

sym
ij ssym

ij . The expression
P

j2GðiÞD
Cj�Ci

dsym
ij
� ssym

ij approximates the total diffusive flux

entering the ith Voronoi cell, where G(i) is the set of indexes enumerating Voronoi cells having common bor-
ders with the i-th cell (the natural neighbors of node i). Other terms of Eq. (2) are integrated over the area of a
Voronoi cell using a first-order approximation, which yields the following spatial discretization of Eq. (1):
Ai
dCi

dt
�
X

j2GðiÞ
D

Cj � Ci

dij
� sij þ AiRi; ð3Þ
where from now on, dij and sij are used to designate dsym
ij and ssym

ij for simplicity. Mass conservation is easily
verified by summing up Eq. (3) over all Voronoi cells. Partitioning into Voronoi polygons also facilitates mesh
regularity, given a relatively uniform distribution of the nodes {ri}, which arises from the uniform meshing of
the volume.

Eq. (3) is discretized in time using a first-order backward Euler scheme with an explicit treatment of the
reaction term. Let Cold

i represent the computed solution at time t, and Rold
i be the reaction term evaluated

at time t, then the solution Ci at time t + Dt is found by solving:
Ai
Ci � Cold

i

Dt
¼
X

j2GðiÞ
D

Cj � Ci

dij
sij þ AiRold

i : ð3aÞ
The resulting sparse linear system is solved iteratively using a preconditioned conjugate gradient method with
an incomplete LU preconditioner.

In summary, our algorithm includes the following steps:

(i) find approximations for unit normals Ni at all computational nodes fri; i ¼ 1; . . . ;NSg.
(ii) for each ri, find the orthogonal projections of its neighbors rj onto the tangential plane, i.e. ~rj ¼ rj � kNi,

where k = Ni Æ (rj � ri).
(iii) after computing a Voronoi decomposition for ri and its neighbors’ projections ~rj, find lengths dij and sij.
(iv) compute the symmetrized distances dsym

ij ¼ ðdij þ djiÞ=2, ssym
ij ¼ ðsij þ sjiÞ=2 and the area

Ai ¼ 1
4

P
j2GðiÞd

sym
ij ssym

ij ; use these values in Eq. (3a).
(v) solve Eq. (3a) to advance the solution in time.

2.2. Coupling between surface and volume variables

The coupling of surface diffusion with a reaction–diffusion system in the volume is important in cell-biolog-
ical applications where proteins diffusing inside the cell can bind to the membrane whereas membrane-bound
proteins can dissociate and become free to diffuse in the cytoplasm (see part II for an example). Because in our
method computational nodes on the surface arise from the meshing of a volumetric computational domain, it
is relatively straightforward to couple membrane diffusion to the processes in the bulk. Still, care must be exer-
cised to ensure full compatibility of the volume and surface solvers such that they preserve mass conservation.

To solve the reaction–diffusion equations in the volume, VCell utilizes a structured orthogonal grid [16].
This facilitates automatic sampling of cell geometry, particularly when it is based on experimental microscope
images, where we can only tell whether a square pixel in the image lies inside or outside the cell, and also
allows one to move easily from one-dimensional to two- to three-dimensional simulations. However, a ‘stair-
case’ approximation of a cell membrane that results from this kind of spatial discretization, in addition to
problems discussed above in the context of surface diffusion, also creates difficulties for the accurate descrip-
tion of membrane fluxes, because the surface area of the ’staircase’ does not converge to that of a real smooth
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membrane when the mesh is refined. A ‘‘flux correction’’ method of effective smoothing [16] was adopted in
the Virtual Cell to circumvent this problem.

Briefly, in the presence of the cell membrane S, a reaction–diffusion equation for a species concentration u,
ut ¼ rðDruÞ þ R, where D is a diffusion coefficient and R is a reaction term, is subject to membrane jump
conditions: �ðDruÞþN ¼ jþ;�ðDruÞ�N ¼ j�, where N is the outward normal to the membrane S, + and
� denote the inside and outside of the cell, and j+, j� are inward and outward membrane flux densities that
can be due to (un)binding processes as well as due to a cross-membrane flow (in the latter case, j+ = j�).
Because the flux densities specified in the jump conditions are meant to be normal to the real membrane,
the corrected (inward) flux density across the ith staircase membrane element is j+ coshi where hi is the angle
between N and the normal to the ith staircase facet. Hence the corrected flux across this membrane element
will be j+h2 coshi, where h2 is the area of the staircase facet. In our practical implementation, it was the ‘‘cor-
rected’’ area ai = h2 coshi of the membrane element which was stored and used for calculating membrane
fluxes. Because it is different from the Voronoi cell area Ai used to solve the surface reaction–diffusion equa-
tions (1), this inconsistency would obviously violate mass conservation when surface and volume variables are
coupled.

Mass conserves automatically if the same surface area is used for evaluating membrane fluxes and reaction
rates at the membrane. One possible strategy is a time-splitting approach where membrane variables are
updated in two separate sub-steps, first due to diffusion and then due to reactions. This would allow one to
keep the Voronoi areas Ai for the surface diffusion, whereas the corrected area ai would be used for all other
processes: membrane reactions, boundary fluxes etc. In an alternative approach, which avoids time-splitting,
the Voronoi areas Ai are used for all purposes, including calculating membrane fluxes. This method tested for
a coupled problem (see Section 2.5) yields an order of convergence between 1 and 2, same as for the surface
diffusion alone. In addition, the test with the uncoupled volume diffusion shows that replacing ai with Ai does
not affect the order of convergence and in fact decreases the magnitude of the error. Therefore, this approach
has been incorporated in the algorithm.

2.3. Boundary conditions

As mentioned above, in VCell, the domain of interest X is placed in a rectangular box. Solving Eq. (1) on a
closed surface contained entirely in the box does not require boundary conditions. In the case of an open sur-
face, which intersects with the walls of the box (such as the cylindrical surface of the test example in Section
2.5), boundary conditions need to be specified at the intersection, as either a given concentration, or normal
flux. One problem with the open surface is that the standard Voronoi decomposition might not produce closed
polygons for the nodes at the surface edge. Also, care must be exercised to ensure that the flux through the
sides of the Voronoi polygons representing the edge of the surface is approximated correctly.

To close the polygons at the surface edge, temporary fictitious neighbors of the nodes at the boundary are
added in a way that allows for the standard decomposition to be applied without any change. The flux bound-
ary conditions are implemented in the spirit of the ‘‘flux correction’’ approach as described in Section 2.2 by
taking into account that the flux enters the surface in the direction of the vector s · Ni, where
s ¼ ðNboundary �NiÞ=jNboundary �Nij, with Ni and Nboundary being the outward normals to the surface at the
i-th boundary node and to the box wall, respectively.

2.4. Convergence studies

Convergence of the numerical solution often follows from the local consistency of a discretization scheme.
In applying our algorithm to surfaces approximated by a staircase, the sampling noise induces a divergent
local truncation error as illustrated in Fig. 3 for diffusion on a sphere. Indeed, the local truncation error
due to spatial discretization is given by si ¼ ðDðDS � LhÞCÞi where C is the exact solution to the problem
Ct = DDSC and the operator Lh is defined as (see Eq. (3))
ðLhCÞi �
1

Ai

X
j2GðiÞ

Cj � Ci

dij
sij: ð4Þ



Fig. 3. Divergence of the truncation error for the sphere test problem (Section 2.5) in L1 (circles), L2 (triangles), and L1 (squares) norms.
The local truncation error, calculated as s ¼ �DLhCexactðt þ DtÞ þ ðCexactðt þ DtÞ � CexactðtÞÞ=Dt with Lh defined in (4), is dominated, for
sufficiently small Dt, by the truncation error due to spatial discretization, D(DS � Lh) Cexact. The results are obtained with Dt = 10�4, small
enough to ignore the effect of the time discretization error (see Section 2.5): isi1 = O(h�0.2), isi2 = O(h�0.3), and isi1= = O(h�0.8).
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The truncation error can be rewritten as si ¼ D
Ai

P
j2GðiÞgij with
2 Fo
gij ¼
sijdij

4
DSCi �

Z
Dij

DSC dA

 !
þ

Z
cij

rSC � nds� Cj � Ci

dij
sij

 !
; ð5Þ
where Dij is the triangle with base sij and node ri (Fig. 2).
Because of the sampling noise, the error in distances sij and dij that enter Eq. (3) is O(hq) with q < 1 (see

Appendix). It then follows from (5) that
gij �
Z

cij

rSC � nds� Cj � Ci

dij
sij ¼ OðhqÞsij ¼ Oðhqþ1Þ;
which leads to a diverging truncation error: si ¼ D
Ai

Oðhqþ1Þ ¼ Oðhq�1Þ. Nevertheless, the solution converges
with an order greater than 1, as illustrated in Fig. 4 for the sphere test problem and by other numerical tests
in Section 2.5. Below we discuss the physics underlying this transformation.

Define the solution error z = (C � Ch) where Ch is a finite volume approximation of the exact solution C

obtained on a given set of computational nodes frigN
i¼1 by replacing DS with the operator Lh. The solution

error relates to the truncation error through the equation [18],
zt ¼ DLhzþ s: ð6Þ

The solution of Eq. (6) can be written as a convolution of the truncation error with a smooth non-negative
Green’s function w,
ziðtÞ ¼
Z t

0

dt0
X

j

wijðt; t0Þsjðt0ÞAj ¼
Z t

0

dt0D
X

j

X
k2GðjÞ

gjkðt0Þwijðt; t0Þ: ð7Þ
The terms summed in (7) are significantly non-zero in the region of the size �
ffiffiffiffiffi
Dt
p

centered at the i-th node.
For Dt	 h2, the sum in (7) contains a large number of terms with alternating signs, which makes it possible
for the solution error to become convergent.2 One source of sign alternation is the flux consistency (mass
r Dt less than or on the order of h2, the error z is dominated by the smallness of time and is tsi=O(hq+1).
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conservation) of the numerical scheme [21], gjk = �gkj, which results in gaining of at least one additional order
of accuracy relative to the order of the truncation error [22]. In addition, the sign of gjk alternates rapidly.
These oscillations, which originate from the approximation of normals based on the staircase surface Sh, lead
to an additional partial cancellation of the error. Our numerical experiments in 2D indicate that this cancel-
lation results in a gain of another half an order of accuracy. We therefore conclude that the overall conver-
gence in space is expected to be of the order greater than 1. Consistent with this conclusion, test results in the
next section show convergence of the solution with an order between 1 and 2.

2.5. Numerical tests

A selection of numerical tests presented in this section illustrates the overall accuracy of the algorithm. In
each test, a 3D box [�L,L]3 containing a given analytical surface is meshed uniformly to produce an orthog-
onal grid with n3 points and spatial step h = 2L/(n � 1). The diffusion coefficient in Eq. (1) is set to 1 and the
equation is integrated over the time interval [0,T] using a first-order backward Euler time discretization
scheme. The resulting sparse linear system is solved by the GMRES iterative method with a preconditioner
based on incomplete LU factorization. This is implemented by using PCGPAK (Scientific Computing Asso-
ciates, New Haven, CT).

In this section, we are concerned with a spatial discretization error. To ensure its dominance in the overall
error, the tests have been run with a sufficiently small fixed time step (Dt = 10�4 was used in all the tests since a
further reduction of the time step had a negligible effect on the total error; to illustrate a computational cost, a
simulation of 1000 time steps for a sphere test problem (see below) run on an Intel Xeon 2.8 GHz node for the
grid of 39,696 surface and 1,061,208 volume points takes 45 min of CPU time).

The following error norms are computed from the local errors zi ¼ ðC � ChÞi: kzk1 ¼
P

ijzijAi=
P

iAi,
kzk2 ¼ ð

P
iz

2
i Ai=

P
iAiÞ1=2, kzk1 ¼ max jzij. The corresponding relative errors, E1, E2, and E1 are computed

by multiplying the norms by 1/||C||2.
Fig. 4. Diffusion on a sphere: (a) numerical solution of the diffusion equation; (b) distribution of the absolute error of this solution for
T = 0.1 obtained with h = 0.012 and Dt = 10�4; (c) relative error as a function of h in L1, L2, and L1 norms, respectively.
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2.5.1. Diffusion on a sphere

In this example, the algorithm is tested against an exact solution on a sphere of radius 1. In the case of
one variable and no source term, a general solution of Eq. (1), which in spherical coordinates {h,w} takes
the form
oC
ot
¼ 1

sin h
o

oh
sin h

oC
oh

� �
þ 1

sin2 h

o
2C

ow2
;

is Cðh;w; tÞ ¼
P1

n¼0

Pn
m¼0e�nðnþ1Þtðan;m cos nwþ bn;m sin nwÞP m

n ðcos hÞ, where P m
n ðcos hÞ are the associated Legen-

dre polynomials. Several low-order terms are used to construct an asymmetrical solution,
Cðh;w; tÞ ¼ 2þ 0:5e�2t cos w sin hþ e�6t cos 2w sin2 hþ e�12t cos 3w sin3 h:
Fig. 4a shows the solution obtained on a 182 · 182 · 182 grid (L = 2.2, h = 0.012) at T = 0.1. The correspond-
ing error distribution and the relative error plots are shown in Fig. 4b and c, respectively.

2.5.2. Diffusion on a surface of revolution with varying curvature

It is generally true that biological applications involve domains with irregular shapes. This test is designed
to study how well the algorithm performs on a surface with varying curvature. The idea is to use a surface of
revolution and axisymmetric initial conditions to recast the problem into an equivalent one-dimensional dif-
fusion–advection problem. The algorithm is then tested against a highly accurate numerical solution of the
equivalent 1D problem which is regarded as ‘‘exact’’.

Let S be a closed surface obtained by revolving a given smooth curve around the z-axis in R3. The surface is
parametrized by two normal coordinates: s, the length of a geodesic line along a meridian from one of the
poles on the z-axis, and w, the angular coordinate along the parallel. S is then defined by r = r(s) where r

is the distance between the point on the surface and the axis of symmetry (a radial coordinate), and the axi-
symmetric (i.e. independent of w) diffusion on S is described by a one-dimensional PDE, oC

ot ¼ 1
rðsÞ

o
os rðsÞ oC

os

� �
.

If the curve used to obtain S is defined in polar coordinates q and h, so that z = q(h)cosh and r = q(h)sinh,
then equation above becomes
oC
ot
¼ 1

rðhÞs0ðhÞ
o

oh
rðhÞ
s0ðhÞ

oC
oh

� �
;

where C ” C(h, t) and s0ðhÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ ðq0Þ2

q
. The surface used in the test is produced by revolving the curve

q(h) = 1.5 � 0.5cos(8h), and the size of the box is L = 2. The ‘‘exact’’ solution is obtained with the initial

conditions Cðh; 0Þ ¼ 1; h 2 ½0; p=2

0; h 2 ðp=2; p


�
and shown in Fig. 5 for T = 5 along with the spatial error distribution

and the corresponding convergence plots.

2.5.3. Diffusion on a cylinder (open surface)

Unlike the previous examples which involve closed surfaces, this test deals with the case of an open surface
intersecting the walls of the box where boundary conditions need to be specified. In VCell, either a given con-
centration (Dirichlet boundary conditions) or normal flux density (Neumann boundary conditions) are
accommodated. In this test, zero flux boundary conditions are imposed on a circular cylinder of radius 1
placed in a box of size L = 1.5. The cylinder is parametrized as x(h,n) = n, y(h,n) = cosh, z(h,n) = sinh for
�L 6 n 6 L and �p 6 h < p. With this parametrization, the surface diffusion equation takes the form,
oC
ot ¼ o

oh
oC
oh

� �
þ o

on
oC
on

� 	
, and the exact solution used in the test is given by Cðn; h; tÞ ¼ e�ðp

2þ1Þt � sin pn � sin h.

The results obtained for this test problem are illustrated in Fig. 6.

2.5.4. Coupling of diffusion on a sphere with diffusion in the volume

Here we study how the coupling of surface (CS) and volume (CV) variables affects accuracy of the algo-
rithm. The test is performed against an exact solution of a system of two coupled PDEs,



Fig. 5. Diffusion on a surface of revolution: (a) numerical solution of the diffusion equation obtained at T = 5 with h = 0.025 and
Dt = 10�4; (b) corresponding distribution of the absolute error; (c) relative error as a function of h in L1, L2, and L1 norms, respectively.

Fig. 6. Diffusion on a cylindrical surface: (a) numerical solution of the diffusion equation obtained at T = 0.1 with h = 0.019 and
Dt = 10�4; (b) corresponding distribution of the absolute error; (c) relative error as a function of h in L1, L2, and L1 norms, respectively.
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oCV

ot
¼ DCV;

oCS

ot
¼ DSCS þ CVjoX � CS;
where oX is a sphere with radius 1, and the first (volume) equation is subject to the membrane jump condition:
�N$CV|dX = CS � CV|oX where N is the outward normal. The system describes a molecular species that can
diffuse in the volume, bind to, and dissociate from, the membrane, and once bound to the surface can undergo
surface diffusion.

The search for an analytical solution is facilitated by using spherical coordinates q, h and w,
oCV

ot
¼ 1

q2

o

oq
q2 oCV

oq

� �
þ 1

q2
DSCV;

oCS

ot
¼ DSCS þ CVjq¼1 � CS;
where DS ¼ 1
sin h

o
oh sin h o

oh

� �
þ 1

sin2 h
o2

ow2, and ðoCV=oqÞjq¼1 ¼ CS � CVjq¼1, and by seeking the solution in the form
CV = f(q)CS. The following exact solution has been used in the test:
CSðh;w; tÞ ¼ Ae�k2t cos h

CVðq; h;w; tÞ ¼ e�k2t sinðkqÞ
ðkqÞ2

� cosðkqÞ
ðkqÞ

 !
cos h;
with A ¼ sin k þ cos k
k � sin k

k2 and k = 1.527338738. The convergence of the numerical solution is illustrated in
Fig. 7.
Diffusion on a sphere coupled to diffusion in the volume: (a) numerical solution for the surface variable obtained at T = 0.1 with
14 and Dt = 10�4; (b) distribution of the absolute error for this solution; (c) corresponding relative error as a function of h in L1, L2,

norms, respectively.
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3. Part II. Application to cell biology

3.1. Biological background and methods

In this section, we describe a cell-biological application which involves realistic 3D modeling of membrane
diffusion coupled to diffusion in the cytosol. The problem concerns a small mobile protein Rac implicated in a
number of processes including regulation of the actin cytoskeleton and cell migration. This protein exists both
in the cytosol and cell membrane [23,24]. Binding to the membrane correlates with Rac activation and initi-
ation of downstream signaling, whereas cytosolic Rac is thought to be mainly inactive. The processes that
mediate Rac activation and binding to the membrane constitute an area of active research. In a recent study
[17], a method of estimating parameters of the in vivo Rac binding to the membrane was proposed. In this
method, measurements of fluorescence loss in photobleaching (FLIP) were analyzed with a non-spatial (com-
partmental) model. Based on this model, a simple fitting procedure was designed to estimate parameters of the
Rac interaction with the membrane. Here, realistic simulations are used for validating the procedure and
assessing the accuracy of the method.

In the experiments3 [17], cells (NIH3T3 fibroblasts) were transfected with a genetic material encoding
synthesis of Rac fused to a green fluorescent protein, GFP-Rac. The FLIP protocol was then applied, which
involves continuous bleaching of GFP-Rac by a laser beam everywhere in the cell except for the small
masked region at cell periphery. Simultaneously, fluorescence loss was recorded in the bleached and
unbleached regions using a confocal microscope. A schematic of the experimental setup and a sample of
typical experimental data are shown in Fig. 8 (courtesy of Kostas Moissoglu and Martin Schwartz).
Although measurements in both regions were made in the same focal layer, the profiles of cell geometry
(Fig. 9) were such that the signal in the bleached region came mainly from the cytosol whereas the fluores-
cence intensity recorded in the masked region was a mixture of signals from the unbleached membrane and
cytosol. There are two processes contributing to the signal decay in the unbleached area: membrane diffu-
sion of Rac and dissociation of Rac from the membrane followed by diffusion in the cytosol to the bleached
region.

To obtain an estimate of the dissociation rate from the FLIP data, a simple two-step fitting procedure was
designed based on the following observations: (i) in all experiments, the signal decay in the bleached region
was fitted well (within a few-percent error) to a two-exponential function; (ii) loss of fluorescence from the
unbleached membrane caused by the membrane diffusion alone is described well by a single exponential func-
tion [17]; (iii) the cytosolic diffusion of Rac over the width of the unbleached region is assumed to be much
faster than interaction with the membrane and photobleaching. Based on the latter assumption, one can apply
a compartmental approximation and introduce the surface density of GFP-Rac in the unbleached membrane
domain, c1, and the concentration of fluorescent GFP-Rac in the bleached cytosol, c2.

First, based on observation (i), the normalized fluorescence decay in the bleached region was fitted to a two-
exponential function:
3 Th
Schwa
c2;norm ¼
c2ðtÞ
c2ð0Þ

¼ a expð�atÞ þ b expð�btÞ ð8Þ
by varying parameters a, b, a, b constrained by a, b, a, b > 0 and a + b = 1. At the second step, the normalized
fluorescence in the unbleached area was fitted to a three-exponential function. This function is derived (see Sup-

plementary Text in [17] for derivation details) by taking into account that both the membrane and cytosol con-
tribute to the signal in the unbleached region. Denoting the unbleached membrane area and cytosol volume that
contribute to the signal by s and v, respectively, one obtains cunbleached,norm (t) = rc1,norm(t) + (1 � r)c2,norm(t)
where c1,norm(t) = c1(t)/c1(0) and the additional parameter r = s(s + vc2(0)/c1(0))�1 ranges from 0 at s = 0 (all
the signal comes from the cytosol) to 1 at v = 0 (the signal comes solely from the membrane). In the compart-
mental approximation, c1 is described by the equation dc1/dt = �(koff + kdiff)c1 + konc2 with kon, koff standing
e idea and design of the experiments belong to K. Moissoglu and M. Schwartz; the experiments were performed by K. Moissoglu in
rtz’ laboratory, U. Virginia.



Fig. 9. Cell geometry and regions of interest: (a) cell geometry built from the stack of segmented confocal images of X–Y slices (smoothing
is applied for visualization purposes only using the method of [25]); the nucleus is treated as excluded volume; the unbleached portion of
the membrane dx (mask) is shown in black; (b) the cytosolic volume x1 in the bleached area from which fluorescence is ‘‘measured’’ is
shown in white; the dark gray region is the unbleached cytosolic volume x2 under the mask, which contributes to the signal in the
unbleached area.
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Fig. 8. Experimental setup and typical data (courtesy of K. Moissoglu and M. Schwartz): (a) a schematic of the experimental setup; (b) a
typical sample of the experimental data.
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for membrane association and dissociation rate constants, respectively, and kdiff being a rate of decay caused by
Rac membrane diffusion alone. Using (8), this equation is readily solved to yield
c1;normðtÞ ¼ e�ct þ ðc� kdiffÞðaðc� aÞðe�at � e�ctÞ þ bðc� bÞðe�bt � e�ctÞÞ

where c = koff + kdiff (it is also taken into account that initially dc1/dt = 0 and kdiff = 0 because the system is at
equilibrium before photobleaching).

By taking all of the above into account, one arrives at the function,
cunbleached;normðtÞ ¼ ~ae�at þ ~be�bt þ ~ce�ct ð9Þ

where ~a ¼ að1þ r a�kdiff

c�a Þ; ~b ¼ bð1þ r b�kdiff

c�b Þ;~c ¼ rð1� a c�kdiff

c�a � b c�kdiff

c�b Þ, that was used at the second step to fit
the normalized fluorescence in the unbleached area by varying parameters c and r in the range c > 0 and
0 < r < 1; at this step, parameters a, b, a, b were kept constant at values obtained from the initial fitting of
the signal in the bleached region to Eq. (8). Parameter koff was then determined as koff = c � kdiff with kdiff esti-
mated in a separate experiment [17]. Parameter r can be viewed as a qualitative indicator of the fraction of the
membrane-bound Rac r0 = S(S + Vc2(0)/c1(0))�1 (V and S are the cytosol volume and membrane area,
respectively), which is however quantitatively different from r. Note that if a local surface-to-volume ratio
of the unbleached region, r = s/v, is known, one can back calculate the ratio koff/kon from parameter r,
koff/kon = r(1 � r)/r, and thus estimate kon.
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3.2. 3D model and computations

To validate the method outlined in Section 3.1, a full spatial model is solved using the algorithm described
in Part I of this paper. The idea is to model realistically both the experimental conditions and data collection.
For given koff and r, 3D simulations are used to generate ‘‘data’’. One can then subject the ‘‘data’’ to the fitting
procedure as described above to see how close the recovered parameter estimates are to the values built in the
model. Of particular interest is the extent to which the assumption of fast diffusion of Rac in the cytosol affects
the accuracy of parameter estimates.

The model is formulated in terms of a spatiotemporal distribution of the surface density of GFP-Rac,
c1(x, t), in the cell membrane dX and the GFP-Rac concentration, c2(x, t), in the cytosol X. It is important
to solve the problem on realistic cell geometry taken from experimental images4 in order to mimic faithfully
the data collection and to account for inhomogeneity of bleaching in z-direction and for the effect of the
excluded volume of the nucleus. The simulated cell (Fig. 9) with the cytosol volume V = 16,051 lm3 and
the plasma membrane surface area S = 8407 lm2 was placed in a 3D computational domain,
(0,Lx) · (0,Ly) · (0,Lz), with Lx = 83.49 lm, Ly = 79.65 lm, and Lz = 9.5 lm.

Governing equations of the model are:
4 Th
oc1

ot
¼ D1DSc1 þ R1;bleach þ Rbind;

oc2

ot
¼ D2Dc2 þ R2;bleach

ð10Þ
and the boundary condition for the variable c2 is D2(oc2/oN)|dX = Rbind where N is the outward normal. No
boundary conditions are needed for c1 because dX is closed. In Eq. (10), D1 and D2 are the diffusion coeffi-
cients in the membrane and in the cytosol, respectively. The first equation is defined only for x 2 dX and
DS is the Laplace–Beltrami operator as defined in Part I of the paper.

The rates of photobleaching are Ri;bleach ¼ �V ðxÞciðx; tÞ; i ¼ 1; 2, where the spatially dependent rate con-
stant V ðxÞ ¼ V maxf ðzÞð1�Hðx; yÞÞ accounts for the inhomogeneity of photobleaching performed with a con-
focal microscope, f(z) = h2/(h2 + z2), and mimics shielding of the unbleached region: H(x,y) equals 1 for the
points under the mask and zero otherwise. In simulations, Vmax = 1 s�1, h = 3 lm and the masked region is
shown in Fig. 9. The rate of binding to the membrane, which enters the first equation in (10) and the boundary
condition for c2, is Rbind ¼ �koff c1ðx; tÞ þ konc2ðx; tÞ where x 2 dX.

Before bleaching, the system is in equilibrium, and the initial distributions are uniform: c1(x, 0) ” c1(0),
c2(x, 0) ” c2(0). It is convenient to introduce the ratio q of the number of membrane-bound Rac molecules
and the number of Rac molecules in the cytosol, q = r0/(1 � r0), then c1(0)/c2(0) = qV/S and kon = koffS/
qV. The algorithm used to solve the model (10) numerically on the geometry of Fig. 9 utilizes uniform orthog-
onal meshing as described in part I of the paper. Simulations have been run with a 0.05-s time step on 96,390
volume grid points and 10,830 surface grid points. Average numerical error of c1(x, t) and c2(x, t) is estimated
to be within 2–4%.

As in real experiments, we first estimate kdiff for a particular mask size (arc length 42 lm, average width
4 lm) used in simulations. For this, the first equation in (10) has been solved separately with Rbind = 0 and
D1 = 0.25 lm2/s (in real experiments, a special molecular construct that does not dissociate from the mem-
brane and has diffusive properties similar to those of Rac was used [17]). The normalized fluorescence in
the unbleached portion of the membrane dx (Fig. 9) is s�1

RR
dx c1ðx; tÞ=c1ð0Þd2x where s ¼

RR
dx d2x. Fitting

to a one-exponential function yields kdiff = 0.0352 s�1 (Fig. 10).
The FLIP experimental protocol was then simulated by solving the full model (10) with parameters koff and

q, representative of those obtained in the experiments [17], and values of D2 around 20 lm2/s. This is an appro-
priate range for the diffusion coefficient of a cytosolic protein of the GFP-Rac size (�50 kDa), according to
estimates and recent measurements [26]. The normalized fluorescence acquired from the portion of the bleached

region x1 (Fig. 9), proximal to the unbleached domain, is calculated as I1ðtÞ ¼ v�1
1

RRR
x1

c2ðx; tÞ=c2ð0Þd3x where

v1 ¼
RRR

x1
d3x. The normalized signal recorded from the unbleached region (x2 and dx) is modeled as
e images were provided by K. Moissoglu and M. Schwartz, U. Virginia.
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Fig. 10. Signal decay in the unbleached membrane in the case of a protein that does not dissociate from the membrane: (a) a series of
snapshots from a simulation with the mask arc length of 42 lm and the average width 4 lm (Vmax = 1 s�1, h = 3 lm, D1 = 0.25 lm2/s); (b)
normalized fluorescence recorded in the masked region of the membrane dx is fitted to a one exponential function Aexp(�kdifft) with
kdiff = 0.0352 s�1.
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I2ðtÞ ¼ ðc1ð0Þsþ c2ð0Þv2Þ�1

Z Z
dx

c1ðx; tÞd2xþ
Z Z Z

x2

c2ðx; tÞd3x

� �
where v2 ¼
RRR

x2
d3x. For the mask used in the simulations, s = 151 lm2 and v2 = 182 lm3. Finally, the

fitting procedure is applied to I1(t) and I2(t) as described above to obtain estimates of koff and
r = (1 + v2S/Vsq)�1 = (1 + 0.6313/q)�1. These estimates are then compared with values built in the model.

3.3. Results

A series of numerical experiments have been performed for all permutations of the parameter values:
koff = 0.03, 0.05, 0.07 (s�1), q = 0.4, 1.0, 2.5 (the corresponding r’s are 0.387, 0.612, 0.798), which are repre-
sentative of ranges typically observed in the experiments, and the following values of the diffusion coefficient
in the cytosol: D2 = 10, 15, 20, 25, 30 (lm2/s). Interestingly, as in the real experiments, the simulated normal-
ized signal in the bleached region, I1(t), was fitted well (within 1–2% error) to the two-exponential function in
all cases, see Fig. 11, which illustrates the simulation outcome and results of the fitting in the case of
koff = 0.05, q = 1.0 (r = 0.612) and D2 = 20 lm2/s.

The results of all simulations are summarized in Fig. 12 (and in Table 1) where each pair of recovered esti-
mates of koff and r is represented by a point in a two-dimensional parameter space. A symbol of the point indi-
cates a particular value of the diffusion coefficient D2 for which those estimates were obtained as described in
the figure legend. The figure also includes the points (shown as filled diamonds) that represent the ‘‘true’’
parameters values listed above, so that a deviation from these points indicates how accurate the estimates are.

As expected, the recovered parameters tend to converge to the ‘‘true’’ values as diffusion in the cytosol
becomes faster, and even in the case of slow diffusion, the estimates of koff and r qualitatively follow the real
values for any given D2. Quantitatively, however, koff is significantly underestimated in the case of high-affinity
binding to the membrane (large q and r). This is because tight binding effectively slows down diffusion in the
cytosol (similar effects are discussed in [27,28]). Not surprisingly, the estimate is skewed most of all when the
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Fig. 11. Simulated ‘‘data’’ and an outcome of fitting for a representative parameter set: (a) a series of snapshots of fluorescence
distribution in the membrane (top panel) and in the confocal z-slice (0 < z < h) inside the cell (bottom panel) from the FLIP simulation
with koff = 0.05 s�1, q = 1.0 (r = 0.612) and D2 = 20 lm2/s; (b) normalized fluorescence I1(t) is recorded in the bleached region x1 and
fitted to a two-exponential function, Eq. (8), with a = 0.5786 s�1, b = 0.0855 s�1, a = 0.94 and b = 0.06; (c) normalized signals from the
unbleached membrane dx and the unbleached cytosol x2; the overall normalized fluorescence I2(t) is fitted to a three-exponential function,
Eq. (9), to recover the estimates koff � 0.0474 s�1 and q � 1.18 (r � 0.652).
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Table 1
Estimates of parameter sets (koff,r) recovered by the fitting procedure for various ‘‘exact’’ sets of values and cytosol diffusion constants as
shown in Fig. 12

‘‘Exact’’ sets (koff, s�1; r) D2 = 30 lm2/s D2 = 25 lm2/s D2 = 20 lm2/s D2 = 15 lm2/s D2 = 10 lm2/s

(0.03, 0.387) (0.0308, 0.404) (0.0311, 0.408) (0.0316, 0.415) (0.0323, 0.425) (0.0338, 0.445)
(0.03, 0.612) (0.0295, 0.631) (0.0295, 0.635) (0.0296, 0.641) (0.0295, 0.651) (0.0295, 0.668)
(0.03, 0.798) (0.0280, 0.816) (0.0277, 0.819) (0.0273, 0.824) (0.0266, 0.831) (0.0253, 0.843)
(0.05, 0.387) (0.0502, 0.410) (0.0504, 0.415) (0.0507, 0.423) (0.0511, 0.435) (0.0517, 0.460)
(0.05, 0.612) (0.0481, 0.639) (0.0478, 0.644) (0.0474, 0.652) (0.0467, 0.664) (0.0453 0.685)
(0.05, 0.791) (0.0448, 0.823) (0.0439, 0.827) (0.0427, 0.833) (0.0408, 0.842) (0.0375, 0.856)
(0.07, 0.387) (0.0693, 0.416) (0.0693, 0.422) (0.0693, 0.431) (0.0692, 0.446) (0.0689, 0.475)
(0.07, 0.612) (0.0660, 0.646) (0.0653, 0.654) (0.0643, 0.661) (0.0627, 0.675) (0.0596, 0.700)
(0.07, 0.798) (0.0603, 0.829) (0.0587, 0.834) (0.0565, 0.840) (0.0531, 0.849) (0.0476, 0.864)
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high-affinity binding is combined with large koff because this case is the exact opposite of the situation where
the cytosolic diffusion is fast compared to the rate of unbinding. Conversely, the estimates of koff are more
precise at low-affinity binding to the membrane (small q, r). Note that the ‘‘direction’’, in which the estimate
deviates from the true value, rotates as q(r) decreases so that the method tends to overestimate koff in the ‘‘cor-
ner’’ of small koff and q(r). Unlike koff, the values of parameter r are always overestimated by the method with
the least relative error obtained in the large koff – large q (r) ‘‘corner’’ of the parameter space.

These observations are important for a correct interpretation of results obtained from the analysis of the
FLIP data with the method of [17]. As an example, consider two Rac mutants that have the same unbinding
rate around 0.07 s�1 but different binding affinities corresponding to r values of 0.4 and 0.8. According to
Fig. 12, the fitting procedure can recover an estimate of koff at r = 0.8 of up to 30% (at D2 = 10 lm2/s) smaller
than that at r = 0.4. The results in Fig. 12 therefore give an idea of a systematic error caused by the assump-
tion of fast diffusion. Using this approach, one can create a table of systematic errors of the method, similar to
Table 1, for comparing any two mutants with various binding affinities.

4. Concluding remarks

In this paper, we described and analyzed an algorithm for simulating diffusion on a curved surface, coupled
to diffusion in the embedding space. The method is implemented within the Virtual Cell, a general-purpose
tool for modeling cell-biological phenomena, thus adding a capability of modeling membrane diffusion cou-
pled to processes inside and outside the cell. The method applies to arbitrary geometries obtained from exper-
imental images. The image processing step is not a part of the algorithm. This separation from fully automated
steps, such as geometry meshing and numerical solvers, is important in the context of an overall VCell design.
Currently, VCell operates on segmented images provided by the user, because this standard data format is
familiar to cell biologists and can be obtained by accessible image-processing tools. Our method, therefore,
was developed for pixilated surfaces obtained from segmented images. It does not require a smooth watertight
surface. Rather, the centers of the staircase facets are used directly as computational nodes, allowing for the
fully conservative coupling of surface diffusion to processes in the embedding space. Because the nodes do not
lie on the true surface, the approximated normals include oscillating sampling errors (‘‘quantization’’ noise).
While this noise leads to a diverging truncation error, the solution converges with an order between 1 and 2,
due in part to mass conservation built in the algorithm.

A relatively low order of convergence of the method can be improved in the future by adapting our solver
to the cases in which smoother surfaces are available as an input, either because a smoothing procedure has
been applied, or because the image is highly resolved. In those cases, a more accurate approximation of nor-
mals could be achieved. Also, the computational nodes might be located closer to the true surface than in the
case of a staircase approximation. The algorithm presented in this paper can still be applied by replacing the
current method of computing normals with a more accurate approximation. Arc lengths would be calculated
with higher accuracy, and the overall accuracy of the algorithm would improve. It is important to bear in
mind, though, that biological data are at best within 5–10% error, and the present method produces results
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in this error range on a relatively coarse mesh. Thus, the benefit of gaining accuracy should be weighed against
development effort and computational cost.

In part II of the paper, the method is applied to simulate fluorescence loss in photobleaching in the geom-
etry of a real cell. This modeling study validates assumptions that underlie a simple and fast analysis of FLIP
data proposed in [17] for inferring parameters of the protein–membrane interaction.
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Appendix. Computation of normal vectors

Because the normal vector N at a given node ri is a cross-product of two non-collinear vectors in the tan-
gential plane at this node, the problem reduces to approximating the tangential vectors. In our algorithm, we
approximate the tangents to the contours obtained by dissecting the surface at ri in the two Cartesian direc-
tions, as shown in Fig. 1 of the main text where the contours are the ‘‘staircases’’ c1 and c2.

Consider one of them (Fig. A0). The set of nodes {Ri} on this contour is always a subset of {ri}. The tan-
gent vector si at a given node Ri can be approximated using its local neighbors, Ri+k and Ri�k, that are k steps
apart from Ri,
si ¼
Riþk � Ri�k

jRiþk � Ri�kj
ðA:1Þ
The optimal choice of k in (A.1) minimizes the total error in si that includes the truncation error due to the
finite difference approximation, and the sampling error. We use p ¼

R
jdxj þ jdyj to parameterize the original

smooth contour R0(p). Let R0(pi) be the point on this contour closest to Ri. With the notation:
Dp ¼ kh; nþ ¼ Riþk � R0ðpi þ DpÞ, and n� ¼ Ri�k � R0ðpi � DpÞ,
Riþk � Ri�k ¼ R0ðpi þ DpÞ � R0ðpi � DpÞ þ nþ � n� � 2R00ðpiÞDp þ 1

3
R0000 ðpiÞðDp3Þ þ nþ � n� ðA:2Þ
Because jnþj; jn�j ¼ OðhÞ and s0
i ¼ R00ðpiÞ=jR00ðpiÞj, the total error jsi � s0

i j ¼ OðDp2Þ þOðh=DpÞ. The mini-
mum of the error is then achieved when Dp = O(h1/3) and k ” Dp/h = O(h�2/3). More precisely, we choose k
Fig. A0. Contour c1 from Fig. 2 of the main text.



I.L. Novak et al. / Journal of Computational Physics 226 (2007) 1271–1290 1289
and Dp as k = (q/h)2/3 and Dp = q2/3h1/3, where q is the local radius of curvature on the original smooth curve.
With the optimal choice of k, the error converges to zero as O(h2/3).

In general, q and the optimal k vary from node to node. We estimate q(Ri) ” qi by the radius of a circle
circumscribed in the triangle [Ri�k, Ri,Ri+k] with k = h�2/3,
qi ¼
jRi�k � RijjRi � RiþkjjRiþk � Ri�kj

2kRi�k � Ri þ Ri � Riþk þ Riþk � Ri�kk

provided it does not exceed half the dimension of the contour, d ¼ maxi;jjRi � Rjj, otherwise qi = d/2. The
accuracy of the normal vector N is determined by the accuracy of s and therefore has the same order,
O(h2/3).

In the case of open surfaces, the tangents at the boundary points are approximated with accuracy
jsi � s0

i j ¼ OðDpÞ þOðh=DpÞ because the scheme is not centered. This yields an optimal k = (q/h)1/2. Since
in our tests, both k = (q/h)2/3 and k = (q/h)1/2 produced results of comparable accuracy for closed surfaces,
the algorithm implemented in the VCell uses k = (q/h)1/2 for all nodes. All the test results in Section 2.5 were
obtained with this algorithm.

References

[1] P. Schwartz, D. Adalsteinsson, P. Colella, A.P. Arkin, M. Onsum, Numerical computation of diffusion on a surface, Proc. Natl.
Acad. Sci. USA 102 (2005) 11151–11156.

[2] I.F. Sbalzarini, A. Hayer, A. Helenius, P. Koumoutsakos, Simulations of (an)isotropic diffusion on curved biological surface,
Biophys. J. 90 (2006) 878–885.

[3] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, third ed., Garland Publ., New York,
1994.

[4] S. Rosenberg, The Laplacian on a Riemannian Manifold, University Press, Cambridge, 1997.
[5] G.L. Xu, Convergence of discrete Laplace–Beltrami operators over surfaces, Comput. Math. Appl. 48 (2004) 347–360.
[6] D. Adalsteinsson, J.A. Sethian, Transport and diffusion of material quantities on propagating interfaces via level set methods, J.

Comput. Phys. 185 (2003) 271–288.
[7] M. Bertalmio, L.-T. Cheng, S. Osher, G. Sapiro, Variational problems and partial differential equations on implicit surfaces, J.

Comput. Phys. 174 (2001) 759–780.
[8] I.F. Sbalzarini, A. Mezzacasa, A. Helenius, P. Koumoutsakos, Effects of Organelle Shape on Fluorescence Recovery after

Photobleaching, Biophys. J. 89 (2005) 1482–1492.
[9] J.B. Greer, An Improvement of a Recent Eulerian Method for Solving PDEs on General Geometries, J. Sci. Comput. 29 (2006) 321–

351.
[10] A. Ratz, A. Voigt, PDE’s on surfaces – a diffuse interface approach, Commun. Math. Sci. 4 (2006) 575–590.
[11] M. Pauly, L.P. Kobbelt, M. Gross, Point-based multiscale surface representation, ACM Trans. Graphics 25 (2006) 177–193.
[12] M. Christensen, How to simulate anisotropic diffusion processes on curved surfaces, J. Comput. Phys. 201 (2004) 421–438.
[13] R. Holyst, D. Plewczynski, A. Aksimentiev, K. Burdzy, Diffusion on curved, periodic surfaces, Phys. Rev. E 60 (1999) 302–307.
[14] B.M. Slepchenko, J.C. Schaff, I. Macara, L.M. Loew, Quantitative cell biology with the Virtual Cell, Trends Cell Biol. 13 (2003) 570–

576.
[15] B.M. Slepchenko, J.C. Schaff, Y.S. Choi, Numerical approach to fast reactions in reaction–diffusion systems: application to buffered

calcium waves in bistable models, J. Comput. Phys. 162 (2000) 186–218.
[16] J.C. Schaff, B.M. Slepchenko, Y.-S. Choi, J. Wagner, D. Resasco, L.M. Loew, Analysis of nonlinear dynamics on arbitrary

geometries with the Virtual Cell, Chaos 11 (2001) 115–131.
[17] K. Moissoglu, B.M. Slepchenko, N. Meller, A.F. Horwitz, M.A. Schwartz, In vivo dynamics of Rac–membrane interactions, Mol.

Biol. Cell 17 (2006) 2770–2779.
[18] J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, third ed., Springer, 2002.
[19] Q. Du, L. Ju, A finite volume method on general surfaces and its error estimates, Numerische Mathematik, submitted for

publication.
[20] G.Leibon, D. Letscher, Delaunay triangulations and Voronoi diagrams for riemannian manifolds, in: Proceedings of the 16th Annual

Symposium on Computational Geometry (Hong Kong, 2000), pp. 341–349.
[21] N. Sukumar, Voronoi cell finite difference method for the diffusion operator on arbitrary unstructured grids, Int. J. Numer. Meth.

Eng. 57 (2003) 1–34.
[22] I.D. Mishev, Finite volume methods on Voronoi meshes, Numer. Meth. Partial Diff. Equat. 14 (1998) 193–212.
[23] L. Van Aelst, C. D’Souza-Schorey, Rho GTPases and signaling networks, Genes Dev. 11 (1997) 2295–2322.
[24] B. Olofsson, Rho guanine dissociation inhibitors: pivotal molecules in cellular signaling, Cell Signal 11 (1999) 545–554.
[25] G. Taubin, T. Zhang, G. Golub, Optimal surface smoothing as filter design, in: Proceedings of the 4th European Conference on

Computer Vision, vol. 1, (1996) pp. 283–292 .



1290 I.L. Novak et al. / Journal of Computational Physics 226 (2007) 1271–1290
[26] M. Arrio-Dupont, G. Foucault, M. Vacher, P.E. Devaux, S. Cribier, Translational diffusion of globular proteins in the cytoplasm of
cultured muscle cells, Biophys. J. 78 (2000) 901–907.

[27] J. Wagner, J. Keizer, Effect of rapid buffers on Ca2+ diffusion and oscillations, Biophys. J. 67 (1994) 447–456.
[28] I.L. Novak, B.M. Slepchenko, A. Mogilner, L.M. Loew, Cooperativity between cell contractility and adhesion, Phys. Rev. Lett. 93

(2004) 268109.


	Diffusion on a curved surface coupled to diffusion in the volume: Application to cell biology
	Introduction
	Part I. Numerical algorithm
	Diffusion on a curved surface
	Coupling between surface and volume variables
	Boundary conditions
	Convergence studies
	Numerical tests
	Diffusion on a sphere
	Diffusion on a surface of revolution with varying curvature
	Diffusion on a cylinder (open surface)
	Coupling of diffusion on a sphere with diffusion in the volume


	Part II. Application to cell biology
	Biological background and methods
	3D model and computations
	Results

	Concluding remarks
	Acknowledgements
	Computation of normal vectors
	References


